Introduction to Paragraph Proofs

A **paragraph proof** is another way a proof is often written. The advantage of a paragraph proof is that you have the chance to explain your reasoning in your own words. In a paragraph proof, the statements and their justifications are written together in a logical order in a paragraph form. There is always a diagram and a statement of the given and prove sections before the paragraph.

- 1. a. What information does the first sentence of a paragraph proof contain?
 - b. What information does the last sentence of a paragraph proof contain?
- 2. For the flow chart proof below, rewrite each box as a statement with the reason for the box as the justification.

Introduction to Paragraph Proofs (Continued)

3. Fill-in the missing statements and justifications in the following paragraph proof.

Given: $\overline{DG} \| \overline{EF}, \overline{DE} \| \overline{GF}$

Prove: $\overline{DG} \cong \overline{EF}$

Since $\overline{DG} \parallel \overline{EF}$ and $\overline{DE} \parallel \overline{GF}$ are given, then $\angle 1 \cong \angle 4$ and $\angle 3 \cong \angle$ ______ because _____. $\overline{DF} \cong \overline{DF}$ because ______. Then $\Delta DGF \cong \Delta$ ______ by _____. Therefore, $\overline{DG} \cong \overline{EF}$ by ______.

4. Fill-in the missing statements and justifications in the following paragraph proof.

Given: AC bisects ∠BAD

 \overline{AC} bisects $\angle BCD$

Prove: $\overline{AB} \cong \overline{AD}$

Since \overline{AC} bisects $\angle BAD$ is given, then $\angle BAC \cong \angle$ ______ because ______. Since \overline{AC} bisects $\angle BCD$ is given, then $\angle BCA \cong \angle$ ______ because ______. Then $\Delta BAC \cong \Delta$ ______ by _____. Therefore $\overline{AB} \cong \overline{AD}$ by ______.

5. Mark the given on the figure. Write your own paragraph proof for the following information.

Given: E and S are right angles.

 $\overline{EF} \cong \overline{ST}$ and $\overline{ED} \cong \overline{SR}$

Prove: $\triangle DEF \cong \triangle RST$

Lesson Plan: Different Methods of Proof

Page 2

Answers: 1. a. The first sentence contains the given statements.

- b. The last sentence contains what is to be proved.
- 2. Lines AB and \overline{CD} are parallel and E is the midpoint of \overline{AD} . Since the \overline{AB} and \overline{CD} are parallel, angles BAE and CDE are congruent because if two parallel lines are cut by a transversal, then alternate interior angles are congruent. For this same reason, angles ABE and \overline{DCE} are congruent. Since E is the midpoint of \overline{AD} , \overline{AE} and \overline{ED} are congruent. Therefore, by angle-angle-side triangle congruence, ΔABE is congruent to ΔDCE .
- 3. Since $\overline{DG} \parallel \overline{EF}$ and $\overline{DE} \parallel \overline{GF}$ are given, then $\angle 1 \cong \angle 4$ and $\angle 3 \cong \angle 2$ because when two parallel lines are cut by a transversal, then alternate interior angles are congruent. $\overline{DF} \cong \overline{DF}$ because of the reflexive property of congruence. Then $\Delta DGF \cong \Delta FED$ by angle-side-angle triangle congruence. Therefore, $\overline{DG} \cong \overline{EF}$ by the definition of triangle congruence.
- 4. Since AC bisects $\angle BAD$ is given, then $\angle BAC \cong \angle CAD$ because of the definition of angle bisectors. Since \overline{AC} bisects $\angle BCD$ is given, then $\angle BCA \cong \angle ACD$ because of the definition of angle bisectors. $\overline{AC} \cong \overline{AC}$ because of the reflexive property of congruence. Then, $\Delta BAC \cong \Delta DAC$ by the angle-side-angle triangle congruence theorem. Therefore $\overline{AB} \cong \overline{AD}$ by the definition of triangle congruence.
- 5. Since $\angle E$ and $\angle S$ are right angles, they both measure 90 degrees by the definition of right angles. Because of this, they are also congruent. We are also given that $\overline{EF} \cong \overline{ST}$ and $\overline{ED} \cong \overline{SR}$. Because of this information, $\Delta DEF \cong \Delta RST$ because of side-angle-side triangle congruence.

Lesson Plan: Different Methods of Proof

Page 3