School Improvement in Maryland
Algebra and Data Analysis - Instructional Strategies
ECR Rubric
Score 4

The response indicates application of a reasonable strategy that leads to a correct solution in the context of the problem. The representations are correct. The explanation and/or justification is logically sound, clearly presented, fully developed, supports the solution, and does not contain significant mathematical errors. The response demonstrates a complete understanding and analysis of the problem.

Score 3

The response indicates application of a reasonable strategy that may or may not lead to a correct solution. The representations are essentially correct. The explanation and/or justification is generally well developed, feasible, and supports the solution. The response demonstrates a clear understanding and analysis of the problem.

Score 2

The response indicates an incomplete application of a reasonable strategy that may or may not lead to a correct solution. The representations are fundamentally correct. The explanation and/or justification supports the solution and is plausible, although it may not be well developed or complete. The response demonstrates a conceptual understanding and analysis of the problem.

Score 1

The response indicates little or no application of a reasonable strategy. It may or may not have the correct answer. The representations are incomplete or missing. The explanation and/or justification reveals serious flaws in reasoning. The explanation and/or justification may be incomplete or missing. The response demonstrates a minimal understanding and analysis of the problem.

Score 0

The response is completely incorrect or irrelevant. There may be no response, or the response may state, “I don't know.”

Explanation refers to the student using the language of mathematics to communicate how the student arrived at the solution.

Justification refers to the student using mathematical principles to support the reasoning used to solve the problem or to demonstrate that the solution is correct. This could include the appropriate definitions, postulates and theorems.

Essentially correct representations may contain a few minor errors such as missing labels, reversed axes, or scales that are not uniform.

Fundamentally correct representations may contain several minor errors such as missing labels, reversed axes, or scales that are not uniform.

Last Revised 8/16/00

Instructional Strategies